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1. INTRODUCTION 

A linear version of backward stochastic differential equations (BSDE's in 
short) was first considered by Bismut ([7], 181) in the context of optimal sto- 
chastic control. Nonlinear BSDE's have been independently introduced by 
Pardoux and Peng [23] and DdEe and Epstein [lo]. These equations were 
intensively investigated in the last years. The main reason for this great in- 
terest in these equations is because of their connections with many other fields 
of research such as: mathematical finance (see El Karoui et al. [13]), stochastic 
control and stochastic games (see Hamadhe and Lepeltier 1171). These equa- 
tions also provide probabilistic interpretation for solutions to both elliptic and 
parabolic nonlinear partial differential equations (see Pardoux and Peng [24], 
Peng [26]). Indeed, coupled with a forward SDE, such BSDE's give an exten- 
sion of the celebrate Feynman-Kac formula to the nonlinear case. 

The classical condition on the drift for proving the existence and unique- 
ness result is a global Lipschitz one. Many authors have attempted to relax this 
condition. For instance, several works treat BSDE's with continuous or local 
Lipschitz drift (see Hamadlne [15], [16], Lepeltier and San Martin [20], N'Zi 
and Ouknine 1221 and the references therein). In the one-dimensional case, the 
essential tool is the comparison-theorem technique. In the multidimensional 
case, the improvements of the Lipschitz condition on the generator concern, 
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generally, the variable y only and the conditions considered are global. It seems 
that the first works treating multidimensional BSDE's with both local con- 
ditions on the drift and only square-integrable terminal data are Bahlali 121, 
131. This author considered BSDE's with locally Lipschitz coefficients both in 
y and z. This study has been continued by Bahlali et al. [4], Aman and N'Zi 
[I] and Essaky et al. [14]. 

Recently, backward stochastic nonlinear Volterra integral equations 
(BSNVIE's in short) have been studied by Lin [21] under the global Lipschitz 
condition qn.the drift. His work is a continuation of a previous one of Hu and 
Peng rA8-j where backward semilinear stochastic evolution equations with val- 
ues in a complete separable Hilbert space have been considered. More precise- 
ly, Lin [21] gives an existence and uniqueness result for the following nonlinear 
BSDE of Volterra type: 

On the other hand, ordinary stochastic Volterra integral equations have 
been investigated by Berger and Mizel [S], [dl, Pardoux and Protter [25], 
Protter [27], Kolodh 1191 and have found applications in mathematical fi- 
nance (see [9] and [l I]). 

In this paper, we are concerned with equation (1.1) and our aim is to 
weaken the global Lipschitz condition on the drift to a Iocal one. The paper is 
organized as follows. In Section 2, we give essentia1 notions on backward 
stochastic nonlinear Volterra equations and Section 3 deals with the main 
result. Finally, Section 4 is devoted to a stability result. 

2. ASSUMPTIONS AND FORMULATION OF THE PROBLEM 

Let (0 ,  (~),,,,,, P) be a fiItered probability space satisfying the 
usual conditions and ( W(t) ,  t E LO, T I )  the &dimensional standard Brownian 
motion defined on it. 

Define 3 = {(t, s) ER; ; 0 < t < s < T )  and denote by 9 the &algebra of 
9, ,,-progressively measurable subsets of 0 x 9. 

Let M2(t, T; Rk) (resp. M2(9; Rkxd)) be the set of Rk-valued (resp. 
Rk ""-valued), &,,-progressively measurable processes which are square-inte- 
grable with respect to P@A@L (here R denotes Lebesgue measure over [0, TI). 
For X E Rk, 1x1 will denote its Euclidean norm. An element Y E  Rkx will be 
considered as a k x d-matrix; its Euclidean norm is given by I YI = JTI (Y  Y*) 
and (Y, Z) = Tr (YZ*). 

gk stands for the Bore1 G-algebra of Rk. 
Moreover, we are given the following objects and assumptions: 

(Al) f :  SZ x 9 x Rk x Rk X d  -+ Rk is a (9@gk@&lkX d/&?k)-measurabIe func- 
tion satisfying: 
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(ii) there exist two constants K > 0 (K sufficiently large) and 0 < a < I 
such that 

I f  ( t ,  s, y, z)l < K (1 + lyl + lzly, P-as., a.e. (t, s) E 9; 

(iii) for every N E  N, there exists a constant L, 3 0 such that 

for all (yl G N ,  ly'l < N ,  for all (t, s) E 9, z E Rk * d, Z' cz Rk xd, where K is' the 
constant iw(A1)' (ii). -- . 

b 

(A2) g : i2 x 9 x Rk + Rk is a (9QBk/gk  d)-mea~~rable function which 
satisfies: 

(i) g ( m ,  -, 0) E MZ (9; Rk 
(ii) 19 (t, s, y)-g (t, s, y')l d K ly -y'l for all y, y' E Rk and for all (t, s) E B7 

where K is the constant in (Al) (ii). 

(A3) 5 is a square-integrable k-dimensional PT-measurable random vector. 

Remark  2.1. Note that (Al )  and (A2) imply 

~(',-,Y(.),ZC.,-))EM~(~;R~) and ~ ( . ; , Y ( - ) ) E M ~ ( ~ ; R ~ ~ * )  

whenever Y E  M2 (t, T ;  Wk), Z E M 2  (9; Rkx 

DEFMI~ON 2.2. A solution to BSDE of Volterra type with data ( 5 ,  f, g) is 
a pair of &,,-adapted processes {(Y (s), Z (t, s)); (t, s) E g )  with values in 
M2 (t, T; Rk) x M2 (9; Rk d, which solves (1.1). 

3. EXISTENCE AND UNIQUENESS 

Before stating the main result, let us give some preliminaries. 

LEMMA 3.1. Let f denote a process satisfying assumption (Al). Then there 
exists a sequence of processes (JJnal such that, for euery n >  1, fn is 
( 9  Bk QBk d/9?k)-mea~~rable, Lipschitzian, satisfies (A 1) (i), (A 1) (ii) and 
QN ( fn - f )  -' 0 as a + + ao for every fixed N, where 

Proof.  Let $, be a sequence of smooth functions with support in the ball 
B (0, la + 1) such that $, = 1 in the ball 3 (0, n) and sup $, = 1. One can easily 
show that the sequence (jJnal of truncated functions defined by f, = f $, 
satisfies all the properties quoted above. B 

Let (fn),31 be associated with f by Lemma 3.1. By the results of Lin [21], 
for every n 2 1, there exists a unique couple of processes ((Y, (s), Z,, (t, s)): 
(t, s) E 91, an element of M2 (t , T; Rk) x M2 (53; Rk d, solution to the BSDE of 
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Volterra type with data ( 5 ,  f,, g). We build the unique solution to equation 
(2.1) by studying convergence of the sequence {(Ym(s), Z n ( t ,  s)): (1, s ) E ~ ) .  

LEMMA 3.2. Assume (AlHA3) hold true. Then there exists a constant 
C > 0, depending only on T ,  K and 5 such thal for every n 2 1 

T T T 

E [ I ~ ( s ) 1 ~ d s + ~ j d s ~ l ~ , ( s ,  u)12du < C for ail ~ E [ T - q ,  TI, 
t I S . . 

where rj < 1/24K2. ._ -- 
- Pr@ of. Since {(Y, ( s ) ,  2, ( t ,  s)): ( t ,  s) E 3)  is the unique solution to the 

BSDE of Volterra type with data (<, f,, g), we have 

Let 93, = {(t, s): T-v 6 t < s G T), where g will be precised later. By Lem- 
ma 2.1 of [21], for every ( t ,  s ) E ~ , ,  we have 

where 
T 

An ( s ,  4 = j(.L (u, u,. Y, (v),  2, (u, 4) -f, (3, 0 ,  Y ,  (v) ,  Zn (s, 4)) dv. 
u 
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Using assumptions (Al), (A2) on f, and g, and the Young inequality 
2ab 6 fla2+b2/P for every j3 > 0, we derive the following inequalities: 

Since 

and 

we have 

8 - PAMS 25.1 



A. Aman and M. N'Zi 

Now, 

+ 2 j 3  I g b ,  u ,  0)I2. 

Combining (3.2H3.53, we get 
T 

Moreover, it is not difficult to show that for every process { h  (s): s E 10, TI}  we 
have 

T T T 

(3.7) ~ j ( ~ - u ) d ~ j l h ( v ) l ~ d v  S 11 < i ( ~ - ~ ~ ~ j ~ h ( ~ ) ~ ~ d ~ .  S 

.So, by integrating (3.6) from t to we have 
T T T 

E 1 1Y,(s)I2ds+ j dsE j IZn(s, u)12 du 
t t S - 
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Let us put 
T T 

U , ( ~ ) = E S I Y ~ ( S ) ~ ~ ~ S  and K ' , ( t ) = ~ f I Z , ( t , s ) l ~ d s .  
t t 

By choosing 8, = P, = 2 4 ~ ' ~  P, = 8 and q < 1/241C2, we deduce that there 
exist K1 and K 2  depending only on 5,  T and K such that 

1 T T T 

(3.8) U n ( t ) + l ~ Y , ( s ) d s < ~ l j ~ n ( s ) d s + K ~ ( l + [ d s ~ K ( u ) d u ) .  
-- t I a 

From& on let C = C ( K ,  T, 5 )  be a constant depending only on K, 'T: 
{ which may vary from line to line. By virtue of (3.8), we have 

where T T 

0, ( t )  = j U ,  (s)  ds and (t)  = 1 V, (s) ds .  
t t 

Integrating (3.9) from t to ?: we obtain 

Consequently, by the Gronwall inequality, we infer that for every n 2 1, 
t ~ [ T - r ,  TI 

T 

(3.10) j E ( s ) d s < C  and o n ( t ) < C .  
t 

Putting (3.10) in (3.8), we obtain again from the GronwaU inequality that there 
exists a constant C = C(t ,  T, K) such that for every n 2 I, t E [T-).I, TI 

T T T 

E S I Y , ( S ) ~ ~ ~ S + E ~ ~ S S ( Z , ( S ,  u)12du < C .  
t t s - 

THEOREM 3.3. Assume ( A l H A 3 )  hold true. If 

lim 
1 

N+ + CC (2LN + 2 ~ 5 )  N2(' -a)  
exp  [(2LN+2L%) = 0 ,  

then there is a unique process { (Y (s), Z ( t ,  s)): ( t ,  S )  E 9) with values in 
M 2  ( t ,  T ;  Rkf x M' (9; Rk '") solution of equation (1.1). 

Before proving Theorem 3.3, let us make the following 

Remark  3.4. The condition (A) is falled if there exists L 2 0 such that 
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P r o o f  o f  T h e o r e m  3.3. 

Uniqueness.  Let ((Y(s), Z ( t ,  s)): (t, s ) E ~ )  and ( ( ~ ' ( s ) ,  Z1(t, s)): (t ,  S ) E ~ )  

be two solutions of equation (1.1). Define 

dY(s )  = Y(s)- Y'(s), AZ(t,  S )  = Z ( t ,  s)-Z1(t,  s), 

A f  ( t ,  s) = f ( t ,  s, Y(s), Z(t, s))-f (E, S ,  Y'(s),  Z ' ( t ,  s)), 

-- .. 
For-evFry N 3 1, we set 

AN = {(a, s, u ) f Q  x glrY IY(s)I+IZ(s, u)l +IYf(u)l + IZf-(s, u)l 2 N ) ,  

In the sequel C is a positive constant depending only on K, and { which may 
vary from line to line. 

W e  have 
T T 

AY(s)+ 1 A f (s, u)du+ [Ag(s, u)+ AZ(s, u)] dW, = 0. 
S S 

Therefore, Lemma 2.1 in [21] yields 

T 

(3.11) EIAY(s)lZ+E j IAZ(s, u)I2du 
S 

T T 

= -2E[<Af ( s ,  u), AY(u))du-2E!(Af(s ,  u), A(s,  u))du 
S S 

T T 

-2E 1 <Ag(s, u), AZ(s,  u))  du-Ej  IAg(s, u)I2du 
S S 

where 
T 

A(s, 4 = f (Af (u, 4 - A f  (3,  v))dv. 
U 
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In view of the assumptions (Al)-(A3), the Holder inequality and the Young 
inequality, we derive the following inequalities: 

T 

JI = 2E j IAf (s, u)l l A y ( u ) l l ~ ~ ( s ,  u)du 
S 

T T 

< E j  l A Y ( ~ ) 1 ~ d u + E  1 Id f (s, u)lZ I A ~ ( s ,  u)du 
S s 

T 

d E_S l ~ Y ( u ) l ~ d u - -  
4 

By virtue of the Holder inequality and the Chebyshev inequality, we deduce 
that 

= I1 +Iz. 
We- have 
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Let 1 < 1/24KZ. By (3.7), for (s, u ) E ~ , ,  we have 

Using the Holder inequality and the Chebyshev inequality, we deduce that 

Therefore, by virtue of (3.14), we have 
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Now, 

. 
By combining (3.11H3.17) and integrating from t  to T we obtain 

C T T T  

+ ( l + ~ ' ) ( 1 + 8 2 ) ~ + ( 4 ( 8 2 + 2 ) K ~  TEJdsJduI IAZ(u, v)12)dv. 
f S U  

Let us choose 8, = p, = f13 = 8K2 and put 

T T 

U ( t )  = ~ j l A Y ( s ) 1 ~ d s  and V ( t )  = E [ I A Z ( ~ ,  s)I2ds. 
f t 

Then we have 

where K ,  = 1 +16K2+2L,+2L%, K, = 4 ( 8 K 2 + 2 ) K 2  T. 
It  follows that 

where 
T T 

O ( t ) = j U ( s ) d s  and P ( t ) = [ V ( s ) d s .  
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Integrating (3.19) from t to T, we get 

1 
(3.20) exp (Kl f) 0 ( t )  + J exp (K1 s) Y(s) ds 

I 

Therefore, the Gronwall inequaiity implies that for t E [T- Q, TI 
-. 

- T  - 
bj exp ( K ,  s) p(s) ds d 

C 
2 ~ Z ( l - 0  eXP CPLN + ZL%) TI 

I ( ~ L N  + ~ L N )  

Passing to the limit on N, we deduce that for each t E [T-q, TI we have 
p(t) = 0 and 0 (t) = 0. Therefore, Y (s) = Y' (s) and Z (t, s) = 2' (t, s) for a.e. 
(t, S)E CT-?, TI x Ct, TI. 

For t E [T- 2q, T- q], we have 

T-rl T - ?  

AY(s)+  1 A f (s, u)du+ [ A g ( s ,  u)+dZ(s, u ) l d K  = 0. 
S S 

Using the above procedure, we can deduce that for a.e, ft , s) E [T- 2q,  T- q ]  x 
[t, TI, Y (s) = Y' (s) and Z ( t ,  s) = 2' (t, s) a.s. Hence, we can prove the unique- 
ness of (1.1). 

Existence. For every n,  EN* and (t, s ) E ~ $ ,  let US set 

Let 

We have 
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- 

By Lemma 3.2 and using the same calculations as in its proof, we have 



118 A. Aman and M. N'Zi 

= 11 13. 

We have 

Hence 
T 

(3.23) J ,  G ( 2 L ~ i - 8 1  + 2 ) E  j IY,(u)- Ym(u)I2 du 
s 

Using the Holder inequality, the Chebyshev inequality and Lemma 3.2, we 
have 

(3.25) 
C 

14 
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On the other hand, 

T T 

+ 2EJ(T-u)duJlfn(u> v, Y.(v),  Zn(u7 ~ ) ) - f m ( u ,  0 ,  Yrn(v), Z m ( u ,  v))12dv. 
8 U 

By (3.7) we obtain 

Therefore, the Holder inequality, the Chebyshev inequality and Lemma 3.2 
yield 



120 A. Aman and M. N'Zi 

K2 
+--I?! I z , ( s ,  u ) - Z m ( s ,  u)I2 du. 

Pa  

Consequently, by (3.26) we have 
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We have 
T K 2  

(3.28) J5 < fi3Ej1&(t()-Ym(u)12du+-Ej IZn(s, u ) -Zm(s ,  u)I2du. 
S P 3  s 

Consequently, from (3.21H3.28) we deduce that 

Let us choose 8, = P2 = P3 = 8K2 and define 
T T 

Um,,( t )  = E 1 ]Y , ( s ) -  L(s)12 ds, K,rn(t) = EJ IZn(t, s ) -Zm(t ,  s)12ds- 
t t 

Then we have 
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where K ,  = 3 -k 16K2 +2LN + 2Li,  K2, K 3 ,  K4 and C are constants depending 
only on K, TT: and 5 .  Integrating (3.29) from t to ?: we obtain 

L 

+X; N * ~  ;a) exp.fK, T ) .  . 
From the Gronwall inequality we deduce that 

x exp (K, T )  . 

In view of the condition (A), passing to the limit successively for N, n and rn in 
(3.30) and (3.31), we have 

T 

j exp (K, s) V,,, (s) ds -+ 0 and U,,, (t)  + 0. 
t 

Therefore, (Y,,  Z,),,,, is a Cauchy sequence in the Banach space M' ( [ t ,  7'l; IPk) 
x M ~ ( [ T - ~ ,  x [ t ,  zq; R ~ ~ ~ ) .  

We put 
Y (s) = lim Y, (s) and Z ( t  , s) = Iim Z,, (t , s). 

n n 

On the other hand, if we put 

then 
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Passing to -the limit successively for N and n, we obtain 

- f (s ,u ,  Y(u) ,Z( s ,u ) )12du+0  for all ~ E [ T - q ,  T I .  

Then, taking the limit in (3.11, we see that (Y, 2) solves equation (1.1) for (t, s ) ~  
CT-?, rl x C t Y  TI. 

From the above calculations we know that for ( t ,  s ) ~  [ T - r ,  TJ x [t, TI 
there exists unique Y (T- q). Now, for (t, s) E [T- 2r1, T- q ] x [ t ,  T-PI],  we 
consider the equation 

With the same argument as above, one can prove that ( x ,  Z,,),, is a Cauchy 
sequence in the Banach space M2 ([T- 2q, T- q] ; Rk) x M2 ([T- 21, T- q ]  x 
[t,  T- q ] ;  Rkx d). One can prove that its limit is the unique solution of the 
Volterra equation with data ( 5 ,  f7 g) for (t, s) E [T-2q, T - r ]  x [t , T- q ] .  
Thus, we can prove the existence by continuing this procedure. H 

.- 4. -STABILITY RESULTS FOR BSNVIE WITH L O C a  LIPSCHITZ DRIFT 

In this section, we prove a stability result for backard stochastic nonlinear 
Volterra integral equations assuming local Lipschitz drift. Let (&JnEN* be a se- 
quence of random variables and (A, g,)n3, a sequence of processes which fulfill 
assumptions of Theorem 3.3. We denote by (Y,, Z,) the unique solution of the 
BSDE of Volterra type with data (c,, f,, g,). Moreover, we consider the fol- 
lowing assumption: 

(A4) For each N E N * \ { ~ ) ,  
(9 en (f, -fo) + 0 as n + + a, 
(ii) n@,-g,)+O as n+ +a, 
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(iii) E I<,-cot2 + 0 as n -, + my 
where 

* (9. -00) = ( j  sup IS. 0 ,  s,  y)-go ( f Y  s ,  y)12 ds at)"' 
9 yeRk 

THEOREM 4.1. Assume (AlHA4) and (A) hold true. Then 

(K,  23 -+(Yo, Zo) in M2 ( t ,  T, R? x M' (9, R ~ ~ ~ )  as n + + m. 

Pro of. Let q > 0 (to be precised later). For each (t, s) E [T- q , T ]  x [t , TI 
it follows from . . Lemma 2.1 of [21] that 

Therefore we obtain 

where 
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For each N > 1, let us consider L,, the Lipschitz constant of f in the ball 
B(0 ,  N) of Rk, and put 

The same procedure as in the proof of the existence part in Theorem 3.3 yields 

Let us choose 8, = P2 = f i 3  = 12K2, 8, = 8, and q < 1/24K2. If we define 
T T 

U,,,(t) = E 1 I Y , ( s ) -  Yo (s) I2ds and K , o ( ~ )  = E IZn(t, s)-Zo ( t ,  s)12 ds, 
t t 

then we obtain . .- 

+ 4 ( 1 2 ~ ~  + 3) E exp (K, s )  

9 - PAMS 25.1 
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where K, = 2 + 24K2 + 2L, + 2L%, K,, K, and C are constants depending only 
on K, and to. The rest of the proof is identical to that of the existence part of 
Theorem 3.3. 

-- . 
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